Neuroplasticity and Recovery After A Traumatic Brain Injury

Maria Rundell, PT, DPT, MSCS; Ashley Miranda, MPT, NCS, CCCE
Outline

- Brain Injury
- Neuroplasticity
- Interventions
Brain Injury

- Is an injury to the brain that is not hereditary, congenital, or degenerative

- Primary damage
 - Focal injury
 - Axonal injury, hypoxic damage and edema
 - Multiple areas of small hemorrhages

- Secondary damage
 - Brain swelling
 - Impaired blood flow
 - Increased ICP
Brain Injury

- 5 million people living with the effects of TBI

- 1.7 million new Brain Injuries each year
 - 60% related to car accidents
 - 15% Sports injury
 - 15% Work related accidents
 - 10% Assault related injuries including gunshot wounds.
Neuroplasticity

- The ability of the central nervous system (CNS) to undergo structural and functional change in response to new experiences.
 - Strengthening existing pathways
 - Formation of new pathways and connections
 - “Pruning” or focusing of neural connections
Neuroplasticity

- Once thought to be hard wired/unable to change
- Now recognized that the Central Nervous System (CNS) has the ability for neuroplastic changes throughout the life course
- Can occur very soon after injury and persist for a significant period of time
Spontaneous recovery
- Over the first 6 months after brain injury
- Further advances and optimization of this spontaneous recovery rely on rehabilitation training
Optimizing Neuroplasticity

- Use it and Improve it
- Use It or Lose it
- Specificity
- Time Matters
Optimizing Neuroplasticity

- Repetition Matters
- Meaningful practice
- Transference Matters
Neuroplasticity

- Ability to alter nerve connections
 - Repetitive use strengthens connections
 - Possible to deliver 300 repetitions of an activity during a 1–hour therapy session
 - Task specific

- Maladaptive plasticity
 - Disuse can weaken synapses
 - Impedes recovery
 - Use it or lose it, interference plasticity
Interdisciplinary Team

- Members of interdisciplinary team
 - Engage and modify surviving pathways
 - Provide new response strategies that compensate for tissue lost to injury
 - Patient centered care
 - Enriched environments
Exercise has been shown to facilitate the release of molecules that support neuroplasticity and offer protection from brain damage.

- Improves
 - Sleep quality
 - Cognition
 - Mood
 - Motor learning
Physical Therapy

- Aerobic exercise
 - Shown to improve mobility, balance and motor function
 - Enhances Brain–derived neurotrophic factor (BDNF)
 - Facilitates neuroplasticity
 - Levels of BDNF are increased for approximately 10–60 minutes following aerobic exercise
 - Aerobic exercised used as “a primer” before performing other tasks
Aerobic Training

- Guidelines for an individual with a Brain Injury
 - 20 minutes of moderate intensity aerobic exercise 3 days per week
 - Cycling, NuStep, Biostep, Treadmill, arm bike, Zumba, dance, pole-walking
Gait training

- Gait
 - Treadmill and over-ground walking
 - Partial weight body-weight suspension (BWSTT)
 - Robotic assisted gait
 - Functional Electrical Stimulation
 - Facilitation of movement from PT
 - Promotes motor learning and neuroplasticity of the lower limbs
 - Rhythmical acoustic pacing
In conclusion

- Humans have an astounding potential for recovery and adaptability!!!

- Never give up and advocate for yourself!
References

www.traumaticbraininjury.net
Questions?