Pharmacologic Treatment of Neurobehavioral Effects of Traumatic Brain Injury

Stacia Wilhelm, PharmD, BCPS
The presenter has no actual or potential conflict of interest in relation to this program.
Craig Hospital

- Specialty rehabilitation of TBI and SCI patients
- Ranked in the Top 10 rehabilitation hospitals by *U.S. News & World Report* for over 20 years
- Federally designated as a Model Systems Center for both TBI and SCI research
- TBI National Statistical Database
TBI Model Systems

- Funded by National Institute on Disability and Rehabilitation Research (NIDRR)
- Partner with VA, DOD, and NIH
- Currently 16 TBIMS centers
- Systematically collect data for research analysis
- Stimulate more rigorous research
Objectives

- Describe obstacles for developing standards of care for pharmacologic treatment of brain injury effects.
- Identify medications used to treat effects after traumatic brain injury and recognize possible side effects from these medications.
- List some medications that should be used with caution in patients recovering from brain injury.
Guidelines for the Pharmacologic Treatment of Neurobehavioral Sequelae of Traumatic Brain Injury

Evidence Based Practice

<table>
<thead>
<tr>
<th>Standards</th>
<th>Guidelines</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on at least 1, well-designed class I study with adequate sample OR overwhelming class II evidence</td>
<td>Based on well-designed class II studies</td>
<td>Based on class II or class III studies with additional grounds to support a recommendation</td>
</tr>
</tbody>
</table>
Obstacles to Developing Standards of Care

- Heterogeneity of patient population
 - Individual injury
 - Neuroanatomy
 - Neurophysiology
 - Neurochemistry
 - Variability of brain function
 - Pre–morbid brain function
 - Post–traumatic sequelae
Obstacles to Developing Standard of Care

- Variable responses to medications
 - Some patients benefit
 - Some patients get worse
 - Some patients more sensitive
 - Some patients resistant or need extreme doses

- Compliance issues
 - Memory
 - Adverse effects and interactions
Obstacles to Developing Standards of Care

- Measuring cognition and behavior
 - Patient may test well, but function poorly
 - Patient may test poorly, but function well

- Variations in biochemistry balance
 - Serotonin
 - Dopamine
 - Acetylcholine
 - Norepinephrine

* Lack of evidence ≠ lack of efficacy *
Neurotransmitters

- **Serotonin**
 - Memory
 - Emotion
 - Sleep/wake

- **Dopamine**
 - Voluntary movement
 - Motivation

- **Acetylcholine**
 - Memory
 - Parasympathetic nervous system

- **Norepinephrine**
 - Wakefulness
 - Arousal
Neurotransmitters

- Glutamate
 - NMDA receptor
 - Cognition
 - Overstimulation → cell death

- GABA
 - Inhibitory neurotransmitter
Treatment Plan

Injury → Correlating neurotransmitter(s) → Symptom(s)

- Acute
- Subacute
- Chronic

Changes by phase

• Start low, go slow
• One intervention at a time

Re-evaluate
Brain Injury Sequelae

- **Cognitive deficiencies**
 - Attention/concentration and speed of processing
 - Memory
 - Executive functions
- **Behavioral**
- **Emotional**
- **Other**
 - Fatigue
 - Insomnia
 - Aphasia
 - Pseudobulbar affect (PBA)
Treatment of Cognitive Deficiencies

- Dopamine, acetylcholine, serotonin, norepinephrine
- No “standards”, just guidelines and options
- Dopamine enhancers
 - Bromocriptine (Parlodel®)
 - Guideline-level recommendation
 - Executive functioning
 - Divided attention
 - Initiation
 - Mental flexibility
Treatment of Cognitive Deficiencies

- Dopamine enhancers
 - Amantadine (Symmetrel®)
 - NMDA antagonist
 - General cognitive functions
 - Attention/concentration and speed of processing
 - Apathy/poor initiation
 - Motivation
 - Perseveration
Treatment of Cognitive Deficiencies

- Dopamine enhancers
 - Carbidopa/levodopa (Sinemet®), pramipexole (Mirapex®), selegiline (Eldepryl®)
 - Initiation
 - Alertness
 - Wakefulness
Treatment of Cognitive Deficiencies

- **Stimulants**
 - Methylphenidate (Ritalin®)
 - Dopamine and norepinephrine
 - Guideline- and option-level recommendations
 - Memory
 - Attention/concentration and speed of processing
 - Mental processing
 - Learning
 - Arousal
 - Apathy/poor initiation
 - General cognitive functions
Treatment of Cognitive Deficiencies

- **Stimulants**
 - Dextroamphetamine (Dexedrine®)
 - Dopamine and norepinephrine
 - Attention
 - Working memory
 - Modafinil (Provigil®)
 - Dopamine, histamine, alpha-1 agonist, inhibits GABA
 - Attention
 - Apathy/poor initiation
 - Memory
 - Speed of processing
Treatment of Cognitive Deficiencies

- Acetylcholinesterase inhibitors
 - Donepezil (Aricept®)
 - Guideline-level recommendation
 - Better general functioning
 - Attention/concentration and speed of processing
 - Learning
 - Memory
 - Apathy/poor initiation
Treatment of Cognitive Deficiencies

- Acetylcholinesterase inhibitors
 - Other acetylcholinesterase inhibitors
 - Galantamine (Razadyne®)
 - Rivastigmine (Exelon®)
 - Physostigmine
Other options

- Memantine (Namenda®)
 - NMDA receptor antagonist
 - Cognitive function
 - Memory

- Bupropion (Wellbutrin®)
 - Dopamine and norepinephrine reuptake inhibitor
 - Cognitive function
Other options

- Atomoxetine (Strattera®)
 - Selective norepinephrine reuptake inhibitor
 - Attention (lower doses)
 - Memory
 - Arousal (higher doses)
 - Apathy/poor initiation
 - Speed of processing
Self-Assessment Question

A 51 y/o female involved in a MVA resulting in diffuse axonal injury is experiencing deficits in wakefulness, arousal, purpose, and initiation. An appropriate neurotransmitter target for pharmacotherapy includes:

- A. Glutamate agonist
- B. GABA agonist
- C. Dopamine agonist
- D. Dopamine antagonist
Treatment of Aggression

- Disruption to dopamine, norepinephrine, acetylcholine, serotonin
- No standards
- Guideline-level recommendations
 - Propranolol (Inderal®)
 - Pindolol
Treatment of Aggression

- Options
 - Antihypertensives
 - Metoprolol (Lopressor®)
 - Clonidine (Catapres®)
 - Mood stabilizers
 - Carbamazepine (Tegretol®)
 - Valproic acid (Depakote®)
 - Lithium (Lithobid®)
Treatment of Aggression

Options

- Antidepressants
 - Sertraline (Zoloft®)
 - Paroxetine (Paxil®)
 - Fluoxetine (Prozac®)
 - Citalopram (Celexa®)

Options

- Antidepressants
 - Trazodone (Desyrel®)
 - Amitriptyline (Elavil®)
 - Desipramine (Norpramin®)
 - Protriptyline (Vivactil®)
Treatment of Aggression

- **Options**
 - **Hormones**
 - Estrogens
 - Medroxyprogesterone (DepoProvera®)
 - **Others**
 - Amantadine (Symmetrel®)
 - Buspirone (Buspar®)

- **Options**
 - **Atypical antipsychotics**
 - Risperidone (Risperdal®)
 - Clozapine (Clozaril®)
 - Olanzapine (Zyprexa®)
 - Quetiapine (Seroquel®)
 - Ziprasidone (Geodon®)
 - **Stimulants**
 - Methylphenidate (Ritalin®)
 - Dextroamphetamine (Dexedrine®)
A patient’s brain CT scan shows bilateral frontal and diffuse axonal injury. He is impulsive and agitated. The best option for pharmacologic treatment of his agitation is:

- A. Haloperidol
- B. Diazepam
- C. Diphenhydramine
- D. Propranolol
Treatment of Psychiatric Disorders

- Serotonin, norepinephrine, dopamine
- Depression/emotional deficits
 - Antidepressants (TCA and selective serotonin reuptake inhibitors)
 - Nortriptyline (Pamelor®)
 - Amitriptyline (Elavil®)
 - Desipramine (Norpramin®)
 - Citalopram (Celexa®)
 - Escitalopram (Lexapro®)
 - Paroxetine (Paxil®)
 - Sertraline (Zoloft®)
Treatment of Psychiatric Disorders

- Depression/emotional deficits
 - Venlafaxine (Effexor®), serotonin/norepinephrine
 - Atomoxetine (Strattera®), norepinephrine
 - Modafinil (Provigil®), ↓ GABA

- Bipolar disorder
 - Valproic acid (Depakote®)
 - Carbamazepine (Tegretol®)
 - Lithium

- Psychosis
 - Olanzapine (Zyprexa®)
 - Clozapine (Clozaril®)
Treatment of Psychiatric Disorders

- Anxiety
 - Tricyclic antidepressants (TCA)
 - Selective serotonin reuptake inhibitors (SSRI)
 - Benzodiazepines
 - Lorazepam (Ativan®)
 - Clonazepam (Klonopin®)
 - May interfere with cognition
An obstacle to treating a TBI patient with depression includes:

- A. The patient may be more sensitive or less responsive to medication
- B. The patient’s previous history does not contribute to current symptoms
- C. Depression in TBI patients is not affected by neurotransmitters
- D. Two medications should be started simultaneously
Medications for Fatigue

- Acetylcholinesterase inhibitors
- Methylphenidate (Ritalin®)
- Modafinil (Provigil®)
- Atomoxetine (Strattera®)
Medications for Insomnia

- Trazodone (Desyrel®)
- Imipramine (Tofranil®)
- Nortriptyline (Pamelor®)
- Mirtazapine (Remeron®)
- Ramelteon (Rozerem®)
Medications for Aphasria

- Tricyclic antidepressants
 - Nortriptyline (Pamelor®)
 - Desipramine (Norpramin®)
- Increase serotonin and norepinephrine
Pseudobulbar Affect (PBA)

- Uncontrollable, inappropriate affect
- Some success
 - Antidepressants (TCA, SSRI)
 - Dopaminergic agents
Pseudobulbar Affect (PBA)

- Dextromethorphan/quinidine (Nuedexta®)
 - Discovered while studying different use for ALS
 - Dextromethorphan
 - Cough suppressant
 - NMDA antagonist
 - Quinidine
 - Antiarrhythmic agent
 - Slow metabolism of dextromethorphan
Side Effects

- Are sometimes “therapeutic”
- Vary among medications in each class
- Guide medication selection
- Make some medications inappropriate for brain injury patients
Medications to Use with Caution in TBI

- Benzodiazepines
 - Exacerbate confusion ("benzodiazepine psychosis")
 - Impairs memory
 - Common for insomnia and agitation
 - Stopping the medication may be the "therapeutic event"
Medications to Use with Caution in TBI

- First generation antipsychotics
 - Block dopamine \rightarrow interferes with recovery
 - Sedation \rightarrow confusion \rightarrow exacerbate aggression
 - Stopping medication can be therapeutic

- Phenytoin (Dilantin®)
 - Anticonvulsant
 - Impairs cognitive function recovery initially
 - Better alternatives for seizure prophylaxis
A TBI patient recently transferred from the ICU has been receiving haloperidol for aggressive behavior. He continues to be assaultive toward caregivers, especially at night. The best intervention would be:

- A. Adding lorazepam PRN
- B. Adding amantadine PRN
- C. Increasing the haloperidol dose
- D. Stopping the haloperidol
A TBI patient with a pre-morbid history of seizure disorder is currently receiving levetiracetam and phenytoin. An intervention to facilitate cognitive recovery would be:

- A. Stop levetiracetam and increase phenytoin dose
- B. Stop phenytoin and add lacosamide
- C. Add phenobarbital
- D. Avoid making any changes to current regimen
Summary

Obstacles to good evidence
- Heterogeneity of patient population
- Variable responses to medications
- Variations in biochemistry balance
- Measuring cognition and behavior
- Compliance issues
Summary

- Limited evidence
 - Few standards
 - Few guidelines
 - Lots of options
<table>
<thead>
<tr>
<th></th>
<th>Cognitive deficiencies</th>
<th>Aggression</th>
<th>Depression</th>
<th>Bipolar disorder</th>
<th>Psychosis</th>
<th>Anxiety</th>
<th>Sleep/wake disorders</th>
<th>Aphasia</th>
<th>Fatigue</th>
<th>PBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopaminergic agents</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulants</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Norepinephrine reuptake inhibitor</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylcholinesterase inhibitors</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>NMDA antagonist</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antidepressants</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mood stabilizer</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atypical antipsychotics</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta blocker</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha adrenergic antagonist</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Side effects to monitor
 - Sexual side effects
 - Headache, GI
 - Dizziness
 - Insomnia
 - Sedation
 - Weight gain
 - Extrapyramidal symptoms
Summary

- Medications to try to avoid
 - Benzodiazepines
 - First generation antipsychotics
 - Phenytoin (Dilantin®)
Thank you for your attention.
Selected References

