
Primitive Reflex Integration for Concussion – A New Use for an Old Technique

Lauren Ziaks, PT, DPT, ATC, AIB-VR Co-founder, PhoenixConcussionRecovery.com Concussion Specialist, Intermountain Healthcare, Park City, UT Chelsea Brown, PT, DPT Concussion Specialist, Boston Sports Medicine, Watertown, MA

Disclosures

Speaker Lauren Ziaks is a co-owner of the website PhoenixConcussionRecovery.com and an employee of Intermountain Healthcare.

Speaker Chelsea Brown is a full-time employee of Boston Sports Medicine.

Learning Objectives

Understand what primitive reflexes are and their role in the concussed population

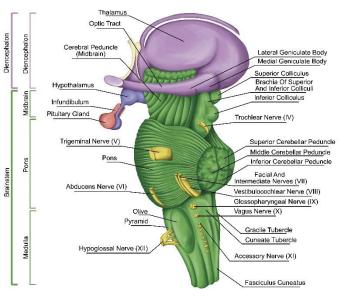
- Demonstrate a functional understanding of vertical integration and the impact disruption can cause
- Demonstrate high level understanding of the Primitive Reflex Screen
- Understand the general progression of PRI exercises

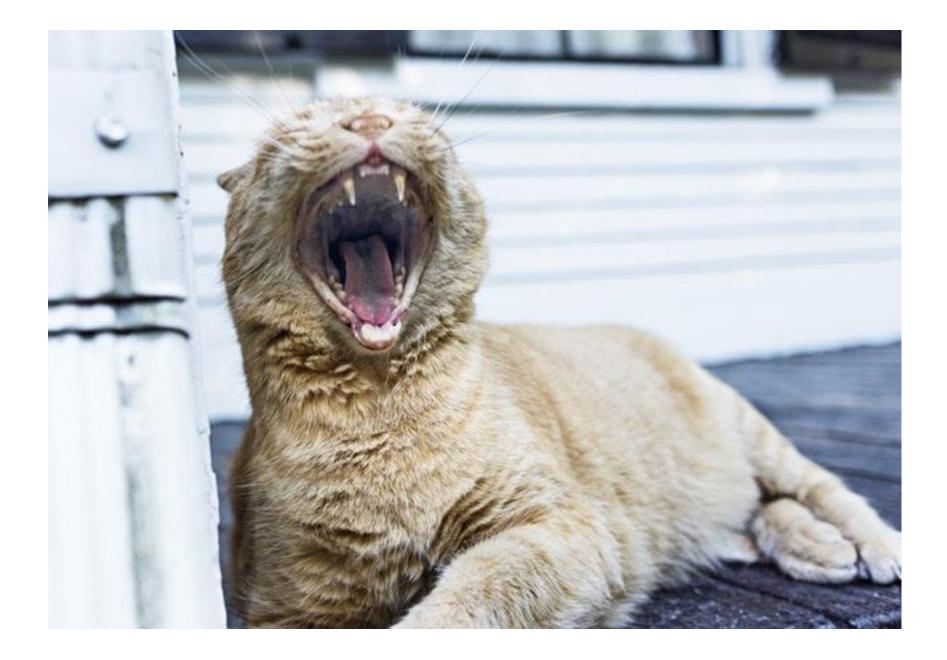
Neuroplasticity⁷

Neuroplasticity is "the ability for neuronal circuits to make adaptive changes on both a structural and functional level, ranging from molecular, synaptic, and cellular changes to more global network changes."

BENEFITS!⁷

- Adult brain *continues* to be adaptable!
 - Provide new stimuli
 - Compensatory mechanisms with therapy
- "Window of opportunity" for recovery
 - When provided the appropriate targeted therapies.


Primitive Reflexes



What IS a Primitive Reflex?^{25,26}

Developed 25-40 weeks of gestation

- Automatic Movement Pattern:
 - Brainstem-mediated
 - Crucial to early development
 - Should integrate in the 1st year of life except TLR

Overview

Survival:

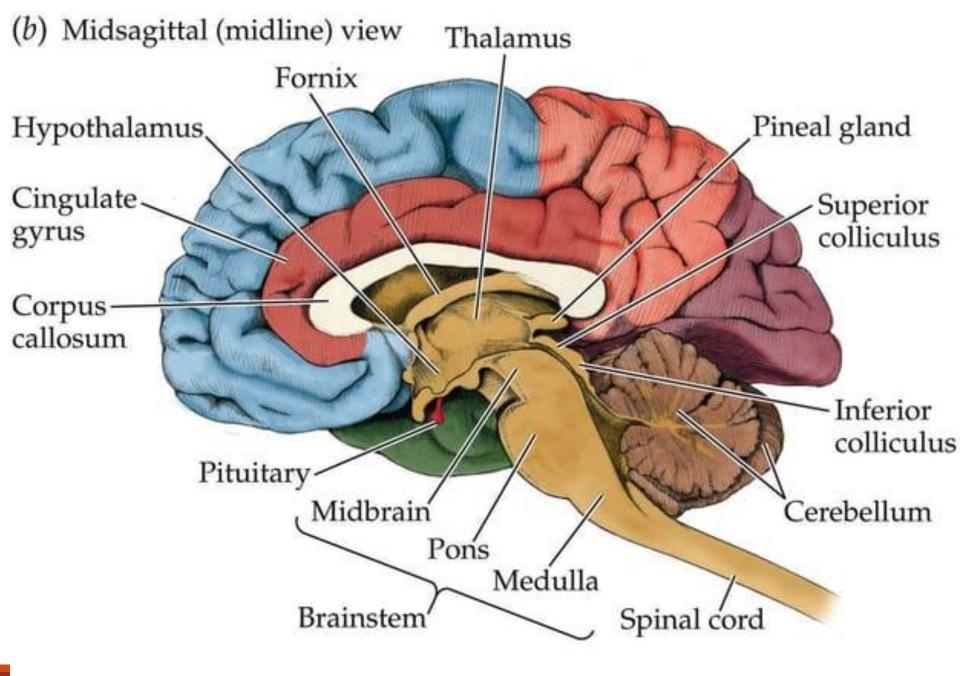
- $^{\circ}$ Rooting stroking cheek ightarrow baby turns for feeding
- Snout, Suck tap lips at midline \rightarrow ms contract.
- Palmar object pressed into palm \rightarrow fingers flex
- Landau questionable not present at birth, address with TLR and STNR in our protocol

• Will discuss later:

- Moro, ATNR, STNR, galant
- TLR questionable not present at birth, widely accepted as a PR

Normal Integration

- Cortical inhibition:
 - Baby starts to explore environment
 - Movement against gravity
 - Replaced with postural reflexes that control balance, coordination and sensory motor patterns
 - Reponses differ with age and are related to CNS maturation



Motor Control – Bobaths²⁹

- CNS serve to organize all information allowing us to perform skilled activities while balanced.
- 4 levels of integration for motor function:
 - Spinal level
 - Brainstem level
 - Midbrain level
 - Cortex
- ANY level can inhibit/suppress activity
 - However, the higher the level the more intricate the influence becomes

"Normal Postural Reflex Mechanism"²⁹

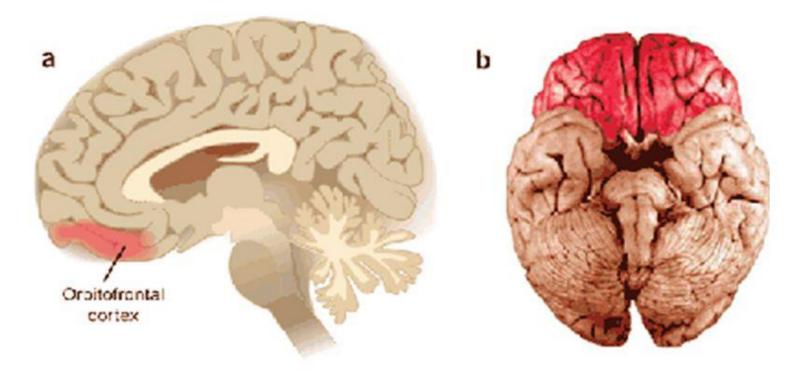
- 3 components to perform skilled movement
 Normal postural tone
 - Intact reciprocal innervations
 - Normal patterns of coordination automatic postural reactions.
- Requires inhibition of all unwanted activities to work properly!

Summary – Functional Needs

- As the Primitive Reflexes "go away" the postural reflexes, VOR, and visual processing systems are able to form and then integrate!
- In the 1st year the brainstem level reflexes are inhibited in sequential order and *replaced* by more mature movement patterns for balance, coordination and sensory development!

Abnormal

Lead to:

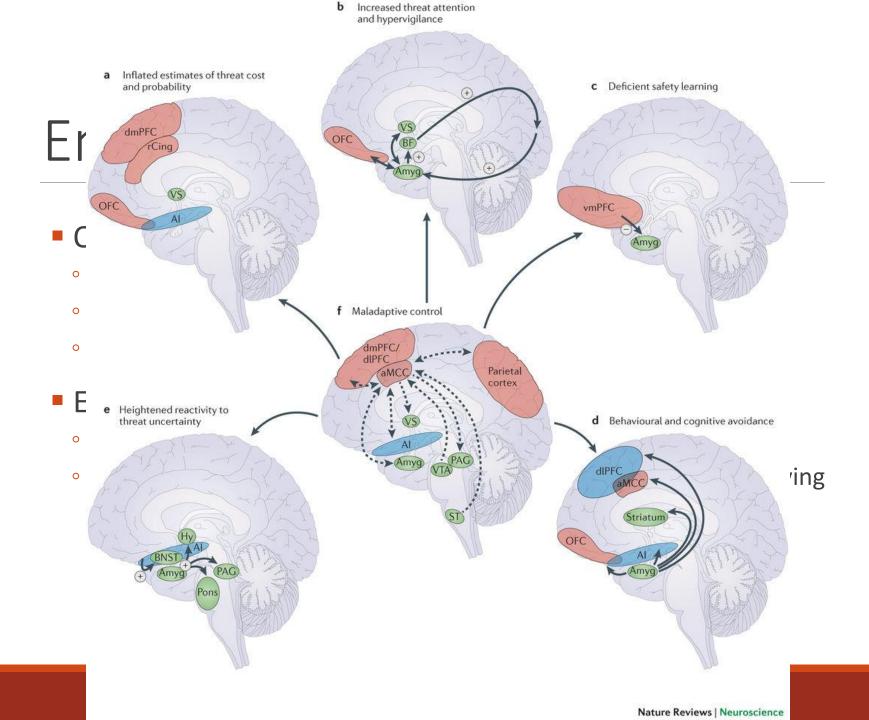

- ADHD, sensory processing disorder, autism, and learning disabilities
- Contribute to deficits with:
 - Coordination, balance, sensory perceptions, fine motor skills, hyper mobility, sleep, immunity, energy levels, impulse control, concentration, and all levels of social, emotional and intellectual learning.

The Frontal Lobe³¹

•Why is the frontal lobe important?

- Characteristic of frontal lobe disorders
 - "Re-emergence of motor acts that were appropriate at developmentally earlier stages – suppressed by maturation of frontal lobes – reappear with dysfunction"
 - Grasp and suck 2 most prominent in frontal lobe disorders

Orbitofrontal cortex


We need our orbitofrontal cortex to make intelligent choices. Its individual cells code for value.

Ann Thomson, Nature Neuroscience

More about the OFC^{32,33}

- Creates reinforcement patterns in our brain based on pleasant and painful experiences.
- Input comes from all senses:
 - olfactory (smell pasta think of grandma), gustatory, auditory (emotions from music), visual, and somatosensory (touch).

What We Know - Retention

- Stress of mother or baby during pregnancy
 O Birth trauma, breech birth, Cesarean birth, induced birth
- Lack of movement in utero
- Extended time spend in car seat/carrier, jumpers and walkers restricting normal movement patterns to develop
- Illness, trauma, injury, chronic stress

Why Haven't PR Been Promising Before?³⁵

- Primitive Reflex use prior in TBI
- Too low-level

Thank you to our FCOVDs!

- PRs have been used to treat developmental delays in children
 - Cerebral Palsy
 - Behavior disorders- ADD/ADHD
 - Reading and writing difficulties
 - Vision therapy

Impact on Visual System

- Individuals with abnormal reflexes but normal acuity have been shown to have difficulties with oculomotor and visual-perceptual skills
 - 80% of our vision comes from the neural pathways including visual processing, eye tracking, accommodation and focusing

Relating to Brain Injury

- Using research associated with reflex integration in children and re-emerging reflexes in adults with frontal lobe damage
- Due to changes to the central nervous system rostral to the spinal cord²⁶
 - Most common in neuro-degenerative diseases with frontal lobe damage- Parkinson's and Alzheimer's
 - Can occur due to injury, trauma, toxins or stress

Reflexes for Vision & Attention^{25,36-38}

Primitive Reflex	Purpose of Reflex	Appears	Should Integrate By:	Signs of Retention
Moro Reflex	Primitive Fight or Flight Reaction	Birth	2 to 4 Months	Hyper Sensitivity, Hyper Reactivity, Poor Impulse Control, Sensory Overload, Social & Emotional Immaturity
Rooting Reflex	Automatic Response to Turn Towards Food	Birth	3 to 4 Months	Fussing Eating, Thumb Sucking, Dribbling, Speech and Articulation Problems
Palmer Reflex	Automatic Flexing of Fingers to Grab	Birth	5 to 6 Months	Difficulty with Fine Motor Skills, Poor Manual Dexterity, Messy Handwriting
ATNR	To Assist Baby Through Birth Canal and Develop Cross Pattern Movements	Birth	6 Months	Poor Eye-Hand Coordination, Difficulty with Handwriting, Trouble Crossing Vertical Mid- line, Poor Visual Tracking for Reading and Writing
Spinal Gallant Reflex	Assist Baby with Birth Process	Birth	3 to 9 Months	Unilateral or Bilateral Postural Issues, Fidgeting, Bedwetting, Poor Concentration, Poor Short Term Memory
TLR	Basis for Head Management and Postural Stability Using Major Muscle Groups	In Utero	3 1/2 Years	Poor Muscle Tone, Tendency to Walk on Toes, Poor Balance, Motion Sickness, Spatial Orientation Issues
Landau Reflex	Assist with Posture Development	4 to 5 Months	1 Year	Poor Motor Development
STNR	Preparation for Crawling	6 to 9 Months	9 to 11 Months	Tendency to Slump While Sitting, Poor Muscle Tone, Poor Eye-Hand Coordination, Inability to Sit Still and Concentrate

Brain Balance Achievement Centers³⁹

Functional Understanding

Moro:

 Motion sickness, clumsy kid – poor balance/coordination – frequently stubs toes etc. Mood swings and distractible.

Galant:

 Postural difficulties, attention deficits, sitting still in class, associated with bedwetting

STNR:

 Muscle tension – neck pain, stiffness. Kids who can't sit still in class, constantly moving/rocking or fidgeting.

ATNR and TLR⁴⁰

ATNR & TLR

ATNR

Hinder functional activities

- Rolling, hands to midline, hands to mouth (exploring!)
- 50% kids with ATNR dx or display sx of dyslexia**
- Can \rightarrow structural deformity:
 - ATNR and scoliosis
 - Both subluxation of femoral head – dislocation – seen functionally as W sit?

Limited in more mature motor mvts – crossing midline (kick ball across body to opp side), coordination, eye tracking and hand-eye coordination

Discrepancy with oral and written performance

Conflict with reading and writing abilities if present >6-7months**

Moro Reflex: Signs of Retention

- Poor balance and coordination
- Difficulty with vision, reading or writing
- Easily fatigued
- Hypersensitivity
- Hyper-activity
- Poor impulse control
- Sensory overload
- Social and emotional immaturity
- Difficulty sleeping

ATNR: Signs of Retention

- Poor concentration
- Balance deficits
- Difficulty crossing vertical midline
- Visual tracking issues
- Difficulty with hand-eye coordination
- Messy handwriting
- Poor sense of direction

STNR: Signs of Retention

- Headaches related to increased muscle tension
- Poor hand-eye coordination
- Difficulty with concentration
- Vision disorders
- Slumping, poor posture
- Inability to sit still and concentrate
- W sitting

TLR: Signs of Retention

- Difficulty with balance
- Visual deficits with tracking and convergence
- Visual perceptual difficulty
- Motion sickness
- Poor sequencing
- Poor sense of time
- Decreased muscle tone
- Toe walking

Spinal Galant Reflex: Signs of Retention

- Unilateral or bilateral posture issues
- Poor concentration
- Poor short term memory
- Fatigue
- Fidgeting/ inability to sit still
- Sensitivity to clothing touching the skin
- Bedwetting
- Irritable Bowel Syndrome

Primitive Reflex Screen: Moro

Bridge:

- Patient in hooklying, press palms together in "prayer" position: complete glute bridge exercise maintain inward pressure on hands. Repeat with arms crossed lightly over chest to compare.
- **Positive test**= unable to maintain inward pressure with palms, hips deviate laterally, lift toes. *Mild pt describes increased difficulty in prayer vs control position of arms crossed over chest.*

Primitive Reflex Screen: ATNR

Quadruped

- Passively rotate head to one side holding for 5 seconds, repeat contralat.
- Positive test = bending elbows of arm opposite rotation or WS posteriorly

Standing (Schilder Test)

- Feet together, arms straight in front with wrists relaxedpassively rotate head with eyes closed
- Positive Test = arms rotating ipsilat or 1 arm dropping in elevation.

Primitive Reflex Screen: STNR

Quadruped

- Passively flex neck holding for 5 seconds, then passively extend neck and hold for 5 seconds- repeat x 3
- Positive test = WS posteriorly, arching back, bending arms, PF of feet

Primitive Reflex Screen: Spinal Galant

Quadruped:

- Stroke one side of the lumbar spine towards sacrumthis should be completed on the skin for most accurate results
- Positive test = arching the back or move/ WS away from side that is stroked

Primitive Reflex Screen: TLR

Superman

- Prone, arms at side with palms facing up; raise arms and legs simultaneously (superman position), repeat with cue to keep head down.
- **Positive test** = unable to keep legs or arms straight, inability to raise both extremities at the same time

How to Fix Disinhibited Reflexes??

Keys to Integration Exercises

Daily exercise with most at 2x10

- Instructed to decrease repetitions or complete in sections if severe increase symptoms.
- Goal is to **FATIGUE** the reflex!
- Slow and purposeful
 - Have someone watch them at home!
 - Quality over quantity
- Exercises must be done exactly as prescribed
- Progress to Level 2 as tolerated

Findings

2-6 week average for integration

• Outliers:

- Non-compliant (#1)
- Severe TBI
- Children with retained reflexes with increase post concussion
 - Often require increased rehabilitation to fully integrate
 - Incorporate postural reflex positions to vision and vestibular ex

Time for Exercises!

For access to our handouts: PhoenixConcussionRecovery.com

→"Provider Portal"

 \rightarrow "Conference"

Password_

Please respect copyright on these unique documents

Exercise Protocol

LEVEL 1

Bridge

Superman, swimmer

Cat/camel, Bird Dog

Snow angel

Marching Zombie

LEVEL 2 Pigeon, duck Deadbug Starfish Slap tap Archer Robot

Level 1 – Moro

Bridge – as seen in screen

• Progress – ADD squeeze

Advanced Moro Exercises Duck on a bike

Pigeon carrying a pizza – Generally Harder

Level 1 STNR

Cat / Camel

Bird Dog

STNR - L2

- Deadbug
 - Squat press
 - Lunge + Overhead Press

Level 1 – ATNR

Zombie

Level 2 – ATNR

Archer

Robot

TLR

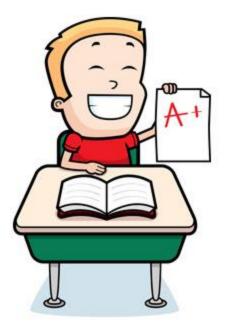
Superman

Swimmer

Galant

Snow Angel

Jumping Jack – often held due to post concussive state


Complex Motor – L2

Slap Tap

Complex Motor – L2

Starfish

Back to your seats!

Combination – retention vs disinhibition?

Level 3?

- Play in postural reflex positions
 - Board games, blocks, coloring, reading
- Vision exercise in postural reflex positions
 - Scanning, figure ground, saccades, accommodation exercises

Cognitive load

• Add to balance, crawling, bear crawling, postural control exercises

Prone on PB – extensor tone vs gravity

1/2 kneeling for postural support

Seated on PB for postural stability

Add Cognitive Load!

Give it a try at home!

- Try any of these postural positions at home tonight!
 - Cook dinner in half kneeling or high kneeling
 - Do your paperwork in side sitting
 - Sit on a physioball it is good for you anyway!
 - Lay over a pillow, cushion, or physioball for extensors.
- If any of these are hard for you WORK ON IT!

Administration

- Documentation
 - + Reflex presentation
 - Integration date

 Write areas of improvement needed as any other exercise – "pt continues to dem sig WS to R with bird dog" or "pt dem full integration of L1 PRI ex today."

Patient Education

 We give a handout with overview of reflexes with their + reflexes indicated. All ther ex programs given with photos and written instructions to improve compliance

Billing

- Used as our ther ex portion of cspine visits or integrated during our normal vision and vestibular visits.
 - ICD-10 Codes
 - R29.2 Abnormal Reflex never use as first code!
 - CPT Codes
 - 97110 therapeutic exercise x 2
 - 97112 neuro re-education
 - 97530 therapeutic activities

The Future

•Go out and start testing patients!

Use our handouts – please respect our copyright protection

- Get patients exercising!
- Team up for future research for this exciting new treatment paradigm for the concussed population!

Questions?

Thank you!

Ziaks.L@gmail.com Cbrown@bostonsportsmed.com Twitter: @LZConcussion Phoenixconcussionrecovery.com

References:

- Centers for Disease Control and Prevention. Heads up: What is a concussion? Available at: https://www.cdc.gov/headsup/basics/concussion_whatis.html. Accessed September 1, 2017.
- Giza C, Prins ML, Hovda DA. It's not all fun and games: sports, concussions, and neuroscience. Neuron. 2017;94(6):1051-1055. https://doi.org/10.1016/j.neuron.2017.05.003.
- Sharp DJ, Jenkins PO. Concussion is confusing us all. Pract Neurol. 2015;15(3):172-186. http://doi.org/10.1136/practneurol-2015-001087.
- 4) Leddy JJ, Baker JG, Willer B. Active rehabilitation of concussion and post-concussion syndrome. *Phys Med Rehabil Clin N Am.* 2016;27(2):437-54. http://doi.org/10.1016/j.pmr.2015.12.003.
- McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. [Epub ahead of print] http://doi.org/10.1136/bjsports-2017-097699.
- Master CL, Gioia GA, Leddy JJ, Grady MF. Importance of 'Return-to-Learn' in Pediatric and Adolescent Concussion. *Pediatric Annals*. 2012;41(9).
- Sophie Su YR, Veeravagu A, Grant G. Neuroplasticity after Traumatic Brain Injury. In: Laskowitz D, Grant G, eds. *Translational Research in Traumatic Brain Injury*. Boca Raton, FL: CRC Press/Taylor and Francis Group; 2016.
- Ellis MJ, Leddy JJ, Willer B. Physiological, vestibulo-ocular and cervicogenic post-concussion disorders: An evidence-based classification system with directions for treatment. *Brain Inj.* 2005;29(2):238-248. http://doi.org/10.3109/02699052.2014.965207.
- Gallaway M, Scheiman M, Mitchell GL. Vision therapy for post-concussion vision disorders. *Optom Vis* Sci. 2017;94(1):68-73.
- Kapoor N, Ciuffreda KJ, HanY. Oculomotor rehabilitation in acquired brain injury: a case series. Arch Phys Med Rehabil. 2004;85:1667-1678.
- Kontos AP, Deitrick JM, Collins MW, Mucha A. Review of vestibular and oculomotor screening and concussion rehabilitation. J Athl Train. 2017;52(3):256-261. http://dx.doi.org.ezproxy.neu.edu/10.4085/1062-6050-51.11.05.
- Master CI, Scheiman M, Gallaway M, et al. Vision diagnoses are common after concussion in adolescents. *Clin Ped*. 2016;55(3):260-267. http://doi.org/10.1177/0009922815594367.
- 13) Scheiman M. Understanding and Managing Vision Deficits: A Guide for Occupational Therapists. 2nd ed. Thorofare, NJ: Slack Inc; 2002.
- Sussman ES, Ho AL, Pedharkar AV, Ghajar J. Clinical evaluation of concussion: the evolving role of oculomotor assessments. *Neurosurg Focus*. 2016;40(4):E7. http://doi.org/10.3171/2016.1.FOCUS15610.
- Ventura RE, Balcer LJ, Galetta SL. The concussion toolbox: the role of vision in the assessment of concussion. Semin Neurol. 2015;35(5):599-606. http://doi.org/10.1055/s-0035-1563567.
- 16) Alsalaheen B, Mucha A, Morris LO, et al. Vestibular rehabilitation for dizziness and balance disorders after concussion. J Neurol Phys Ther. 2010;34(2):87-93. http://doi.org/10.1097/npt.0b013e3181dde568.
- Fife TD, Kalra K. Persistent vertigo and dizziness after mild traumatic brain injury. Ann. N.Y. Acad Sci. 2015;1343:97–105. http://doi.org/10.1111/nyas.12678.
- Katsarkas A. Benign paroxysmal positional vertigo (BPPV): Idiopathic versus post-traumatic. Acta Otolaryngol. 1999;119(7):745-749.
- 19) Marzo S, Leonetti JP, Raffin MJ, Letarte P. Diagnosis and management of post-traumatic vertigo. *Laryngoscope*. 2004;114(10):1720-1723.
- Skop, K. Traumatic Brain Injury and Concussions: An Advanced Vestibular-Balance Course. 2015 June 27-28; Las Vegas, NV: North American Seminars Inc.

- 21) Han BI, Song HS, Kim JS. Vestibular rehabilitation therapy: review of indications, mechanisms, and key exercises. *J Clin Neurol.* 2011;7(4):184-196. http://doi.org/10.3988/jcn.2011.7.4.184.
- 22) Barlow KM, Crawford S, Stevenson A, Sandhu SS, Belanger F, Dewey D. Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury. *Pediatrics*. 2010;126(2):e374-81. http://doi.org/10.1542/peds.2009-0925
- 23) De Beaumont L, Henry LC, Gosselin, N. Long-term functional alterations in sports concussion. *Neurosurg Focus.* 2012;33(6):E8. http://thejns.org/doi/abs/10.3171/2012.9.FOCUS12278.
- 24) Eisenberg MA, Meehan WP, Mannix R. Duration and course of post-concussion symptoms. *Pediatrics*. 2014;133(6):999–1006. http://doi.org/10.1542/peds.2014-0158.
- 25) Batra M, Sharma VP, Batra V, Malik GK, Pandy RM. Neurofacilitation of Developmental Reaction (NFDR) approach: a practice framework for integration/modification of early motor behavior (Primitive Reflexes) in Cerebral Palsy. *Indian J Pediatr.* 2012;79(5):659. http://doi.org/10.1007/s12098-011-0545-3.
- 26) Matias-Guiu JA, Cabrera-Martin MN, Fernádez-Matarrubia M, et al. Topography of primitive reflexes in dementia: an F-18 fluorodeoxyglucose positron emission tomography study. *Eur J Neurol.* 2015;22:1201–1207. http://doi.org/10.1111/ene.12726.
- 27) Lehman RK, Schor NF. Neurologic evaluation. In: Kliegman RM, Stanton BF, St Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics. 20th ed. Philadelphia, PA: Elsevier; 2016:Chap 59.
- 28) Rennie JM, Huetas-Ceballos A, Boylan GV, Shah DK, et al. Neuorological problems in the newborn. In: Rennie JM, ed. *Rennie and Roberton's Textbook of Neonatology*. 5th ed. New York, NY: Elsevier; 2012:chap 40.
- 29) Valvano J, Long T. Neurodevelopmental Treatment: A Review of the Writings of the Bobaths. Ped Phys Ther. 1991:Fall. 0898-5669/91/0303-0125\$3.00/0 1991.
- 30) Tucker DM, Derryberry D, Luu P. Anatomy and Physiology of Human Emotion: Vertical Integration of Brain Stem, Limbic, and Cortical Systems. In: Borod JC, ed. *The Neuropsychology of Emotion*. New York, NY: Oxford University Press; 2000:56-79.
- Ogar J, Gorno-Tempini ML. The Orbitofrontal Cortex and the Insula. In: Miller BL, Cummings JL, eds. *The Human Frontal Lobes Functions and Disorders*. 2nd Ed. New York NY: The Guilford Press; 2007:59-65.
- Cummings JL, Mega MS. Frontal Lobe Dysfunction. In: Cummings JL, Mega MS, eds. Neuropsychiatry and Behavioral Neuroscience. New York, NY: Oxford University Press; 2003:128-145.
- 33) Lee AY, Chui H. Vascular Disease of the Frontal Lobes. In: Miller BL, Cummings JL, eds. The Human Frontal Lobes Functions and Disorders. 2nd Ed. New York, NY: The Guilford Press;2007:Chapter 29.
- 34) Grupe DW, Nitschke JB. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci. 2013;14:488–501. doi:10.1038/nrn3524.
- 35) Wortzel HS, Frey KL, Anderson CA, Arciniegas DB. Subtle neurological signs predict the severity of subacute cognitive and functional impairments after traumatic brain injury. *J Neuropsychiatry Clin Neurosc.* 2009;21(4);463-466. http://doi.org/abs/10.1176/jnp.2009.21.4.463.
- 36) Goddard S. Research on Reflexes. Reflexes, Learning and Behavior: A window into the Child's Mind. Available at: http://www.moveplaythrive.com/images/pdf/ResearchonReflexes.pdf. Accessed 26 March 2017.
- 37) Story S. Importance of Integrating Reflexes. Available at:
 - http://www.moveplaythrive.com/images/pdf/integrating_reflexes.pdf. Accessed 26 March 2017.
- 38) van Boxtel, M.P.J., Bosma, H., Jolles, J. et al. J Neurol (2006) Prevalence of Primitive Reflexes and the Relationship With Cognitive of Change in Healthy Adults. 253: 935. doi:10.1007/s00415-006-0138-7
- 39) Brain Balance Achievement Centers. Retained Primitive Reflexes as a Sign of Brain Imbalance. Available at: https://www.brainbalancecenters.com/blog/2014/09/retained-primitive-reflexes-sign-brainimbalance/. Accessed November 2, 2017.
- 40) Martin S. Teaching Motor Skills to Children with Cerebral Palsy and Similar Movement Disorders: A Guide for Parents and Professionals. Woodbine House. 2006. ISBN 1-890627-72-0.